
Shadow Mapping
Algorithms

Gary King
Technical Developer Relations

©2004 NVIDIA Corporation. All rights reserved.

Shadow Mapping Introduction

Casting Curved Shadows on Curved Surfaces,
Lance Williams

Render scene from light’s point of view
Closest objects to light are occluders

Render scene from eye’s point of view
Project all fragments into shadow map
If depth > depth(shadow), object is in shadow

©2004 NVIDIA Corporation. All rights reserved.

Shadow Mapping Diagram

light
source

eye
position

depth map Z = A

fragment’s
light Z = B

depth map image plane

eye view image plane,
a.k.a. the frame buffer

©2004 NVIDIA Corporation. All rights reserved.

Shadow Mapping on GPUs

On Radeon 9500+
Floating-point textures (R32F)
Pixel shader filtering and comparison

On GeForce 3+
Native shadow map support (16 and 24-bit integer)
2x2 bilinear percentage closer filtering for free
2x speed rendering on GeForceFX and later GPUs

32ppc on GeForce 6800 GT

©2004 NVIDIA Corporation. All rights reserved.

Simple, Right?

Shadow maps are a nice, elegant, easy-to-
implement, technique for shadowing…

Except for…

©2004 NVIDIA Corporation. All rights reserved.

Shadow Acne

Surface incorrectly self-shadows

©2004 NVIDIA Corporation. All rights reserved.

Perspective Aliasing

Blocky shadows cast onto nearby receivers

©2004 NVIDIA Corporation. All rights reserved.

Projective Aliasing

Streaked shadows cast onto ~parallel receivers

©2004 NVIDIA Corporation. All rights reserved.

Omnidirectional Lights

Point lights cast shadows in all directions

©2004 NVIDIA Corporation. All rights reserved.

Source of Shadow Acne

Polygon

Eye Plane

Light Plane

Eye’s distance > shadow depth

Incorrect Self-Shadowing

©2004 NVIDIA Corporation. All rights reserved.

Depth Bias

Add epsilon to shadow depths, such that
eye depth <= shadow depth

For all fragments from the same polygon

How much epsilon is needed?
Art, not science
Movie houses spend hours/days tweaking shadow
parameters frame-by-frame to avoid artifacts

©2004 NVIDIA Corporation. All rights reserved.

Depth Bias Diagram

Polygon

Light Plane

Eye’s distance < shadow depth

Shadow acne eliminated

Biased Polygon

©2004 NVIDIA Corporation. All rights reserved.

Using Depth Bias in Direct3D9

Ignore DirectX SDK Depth Bias documentation

Depth bias is a floating point number that is
added to the interpolated fragment Z value

Can be positive or negative

To bias by 1 LSB of a 24-bit depth buffer, use
float fBias = 1.f / 16777215.f;
DWORD dwBias = *(DWORD*)&fBias;
SetRenderState(D3DRS_DEPTHBIAS, dwBias);

©2004 NVIDIA Corporation. All rights reserved.

Resampling Error

Projected pixels are snapped to nearest texel
This is a window of [+/-0.5,+/-0.5] in the texture
Up to | 0.5 ∂z/∂s | + | 0.5 ∂z/∂t |

Since polygons are planar, bilinearly filtering the
depth values is almost correct

∂z/∂s and ∂z/∂t can be inferred from nearby texels
Bilinear weights give ∂s and ∂t, BUT
Polygon edges break the planar assumption
Perspective Z is hyperbolic, not linear

©2004 NVIDIA Corporation. All rights reserved.

Slope-Scale Depth Bias

Instead, bias the shadow depth based on the
post-projective Z-slope

Slope-scale depth bias lets GPU compute this
In D3D, use D3DRS_SLOPESCALEDEPTHBIAS

Total bias is m*SLOPESCALE + DEPTHBIAS
Where m = max(| ∂z/∂x | , | ∂z/∂y |)

©2004 NVIDIA Corporation. All rights reserved.

Slope-Scale Depth Bias Diagram

Original Polygon

Constant Bias

Constant + Slope Bias

©2004 NVIDIA Corporation. All rights reserved.

Source of Perspective Aliasing
Eye View Shadow map

Blue and green region occupy significant portion of eye’s view, but
receive comparatively few shadow texels

©2004 NVIDIA Corporation. All rights reserved.

Perspective Aliasing in 2D

Eye Samples

©2004 NVIDIA Corporation. All rights reserved.

Perspective Aliasing in 2D

Shadow Samples

Duelling Frusta : Each frustum points toward the other,
resulting in perfectly nonoptimal shadow maps

©2004 NVIDIA Corporation. All rights reserved.

Perspective Aliasing in 2D

All pixels project to 3
shadow texels!

©2004 NVIDIA Corporation. All rights reserved.

The Sea of Aliasing “Solutions”

Many ways proposed to reduce aliasing
Increase shadow map resolution
Unit cube clipping
Cascaded Shadow Maps (????)
Perspective Shadow Maps (Stamminger, 2002)
Light-Space PSMs (Wimmer, 2004)
Trapezoidal Shadow Maps (Martin, 2004)

… Not counting filtering & soft shadow algorithms!

What works, and what are the problems?

©2004 NVIDIA Corporation. All rights reserved.

Increasing Resolution

More samples = less aliasing

But how many samples is enough?
128x128 512x512

©2004 NVIDIA Corporation. All rights reserved.

Sample Density Requirements

Ideally, we want at least one unique shadow
sample for every pixel on the screen

Ray tracing and stencil shadow volumes give this

So, we want to satisfy
Area(eyeProj * eyeView * P) <=
Area(lightProj * lightView * P)

for all P, and all view combinations

This is 22 degrees of freedom

©2004 NVIDIA Corporation. All rights reserved.

Increasing Resolution

Not possible to satisfy this for arbitrary situations
with one shadow map and one linear projection.

But not all situations are arbitrary
Flashlights

lightView*P ~ eyeView*P

Static lights in enclosed environments
Area(lightProj*lightView*P) is bounded at level-
design time

When DoF can be reduced, resolution tweaking
may be sufficient

©2004 NVIDIA Corporation. All rights reserved.

Unit Cube Clipping

Only focus shadow map where it is used
On the visible receivers

For large light sources / scenes, this may be a
small percentage of the total scene

Shadow aliasing will depend on the viewer, but
quality improvement can be substantial

Quality is always at least as good as not clipping

©2004 NVIDIA Corporation. All rights reserved.

Unit Cube Clipping

Without Clipping With Clipping

©2004 NVIDIA Corporation. All rights reserved.

Unit Cube Clipping View Dependence

Viewer focused on small area Viewer looking at distance

©2004 NVIDIA Corporation. All rights reserved.

Implementation

For each light, determine which visible objects will
receive shadows from it

Build light projection matrix to maximize the
shadow map area used by these objects

Transform receiver AABBs by unmodified lightProj
Merge AABBs into full bounding rectangle
Compute ortho transform to bias & scale resulting
AABB to cover the entire shadow map
lightProj’ = ortho * lightProj;

©2004 NVIDIA Corporation. All rights reserved.

Cascaded Shadow Maps

Satisfy area constraint using multiple maps
Extremely popular technique

For each receiver in the scene, compute optimal
lightProj*lightView, given eyeView*P.

Many variants/trade-offs possible, to reduce
number of maps required (at expense of quality)

Handles duelling frusta and omnidirectional lights

©2004 NVIDIA Corporation. All rights reserved.

PSMs & Variants

Why not warp shadow map by view projection?

Perspective transform makes objects close to
viewer larger than objects farther away

Increasing number of shadow texels focused on them

Eye Space Post-Projective Space

©2004 NVIDIA Corporation. All rights reserved.

Perspective Variants

Perspective Shadow Maps
Stamminger & Drettakis, 2002

Light-Space Perspective Shadow Maps
Wimmer, 2004

Trapezoidal Shadow Maps & variants
Martin, 2004

©2004 NVIDIA Corporation. All rights reserved.

Implementing PSMs

Transform scene into post-projective view space

Construct a projection transform for the light
From light’s position in post-projective space

Compose light projection matrix with scene

Simple in concept, hard in practice
Post-projective space is filled with singularities
Spends too many shadow texels on nearby objects

©2004 NVIDIA Corporation. All rights reserved.

Implementing LSPSMs

Construct “Light Space” transformation based
on view & light directions

Compute a 3DH projection point based on
frustum Znear and Zfar

Compose perspective transform with light space

Perspective xform bounds based on CSG ops
Easy for directional lights, clipper required for others

©2004 NVIDIA Corporation. All rights reserved.

Implementing TSMs

Project view frustum extremities by lightProj
lightProj is conventional shadow mapping matrix
Clip view frustum to light frustum for local lights

Find 2D convex hull of projected frustum

Construct a trapezoid that tightly bounds hull

Use 2DH transform to convert trapezoid to square

©2004 NVIDIA Corporation. All rights reserved.

Shadow Map Comparison

TSM LSPSM

PSMUniform

©2004 NVIDIA Corporation. All rights reserved.

Implementation Issues

No frame-to-frame caching

Near/Far Shadow Map Quality
All variants have ways to balance this

Depth Biasing
PSM variants much worse than uniform shadow maps
Slope/Scale frequently required, may not be enough
TSM is extreme case

So bad that authors recommend using depth replace to
output non-warped Z instead

©2004 NVIDIA Corporation. All rights reserved.

TSM Z vs Uniform Z

8 bit depth values are all black for TSMs!

TSM Uniform

©2004 NVIDIA Corporation. All rights reserved.

Optimization Parameters

Each PSM variant has a way to trade-off near/far
shadow quality

PSMs: Zinfinity
LSPSMs: Nopt
TSMs: 80% line

All of these control the perspective distortion

To get best quality, these terms must be adjusted
dynamically (demo doesn’t do this)

©2004 NVIDIA Corporation. All rights reserved.

Infinite Light Demo

©2004 NVIDIA Corporation. All rights reserved.

Thoughts on PSM Variants

Only practical for infinite lights
Local light implementations require clippers, 3D
convex hulls, and many other expensive CPU ops
And none can handle duelling frusta

Not an issue for infinite lights

LSPSMs and TSMs are much easier to
implement than PSMs

Light and Trapezoid Space avoid major singularities

TSM variants provide the best overall quality
Especially with unit-cube clipping

©2004 NVIDIA Corporation. All rights reserved.

Cascaded PSM Variants

For extreme outdoor scenes, a single PSM may
be insufficient

However, the texel redistribution is still beneficial

Consider using cascaded PSMs/TSMs
Partition view frustum into chunks
Compute unique PSM/TSM transform for each chunk

©2004 NVIDIA Corporation. All rights reserved.

Omnidirectional Shadowing

No one linear transform can handle all of the occluders

Occluders

©2004 NVIDIA Corporation. All rights reserved.

Solutions

Nonlinear projections
Dual-parabaloid
Hyperbolic
Spherical

Multiple linear projections
Cube Maps

©2004 NVIDIA Corporation. All rights reserved.

Nonlinear Projections

Hardware interpolation of x/w y/w is wrong

Requires high scene tesselation
Reducing number of interpolated fragments

Doesn’t work well with deferred renderers
Since exact projection per-pixel during lighting
significantly differs from inexact projection per-vertex

GPGPU “scatter” operations would help, here…

©2004 NVIDIA Corporation. All rights reserved.

Cube Maps

6 simple linear projections
No interpolation problems

Single-pass lighting

Don’t play well with depth textures, so you lose:
Free bilinear PCF
32ppc rendering
Extra texture memory to support both 2D and
omnidirectional shadows

©2004 NVIDIA Corporation. All rights reserved.

Why No DSTs?

DSTs support is lost since cubemap distance is
typically radial, rather than planar.

However, eye-space Z of a 90 degree projection
is just an unsigned permutation of [s t r]

If Znear and Zfar are equal for all faces, window-Z is:

Where MA = max(|s|, |t|, |r|)

nearfar

far

nearfar

nearfar
s ZZ

Z
ZZ

ZZ
MA

Z
−

+
−

×
−

=
1

©2004 NVIDIA Corporation. All rights reserved.

Virtual Shadow Depth Cube Textures

This allows us to use planar depth, which can
be generated by rendering to a DST

And if the cube faces are tiled in a DST…
Then we can render omnidirectional shadows in 1
pass, just like with cube maps!

Need a way to efficiently map from (s,t,r) to (x,y)
Use a smaller, precomputed G16R16 cubemap to
perform this indexing

©2004 NVIDIA Corporation. All rights reserved.

VSDCT Demo

VSDCT filtering > 2x faster than cube filtering

©2004 NVIDIA Corporation. All rights reserved.

Some General Performance Thoughts

Use scissor to avoid shading pixels outside of
light range; good when light is in view

©2004 NVIDIA Corporation. All rights reserved.

General Performance Thoughts

Cull aggressively: if an omni light is outside the
view frustum, at least one face can be culled

©2004 NVIDIA Corporation. All rights reserved.

General Performance Thoughts

When lights are small on-screen, they don’t
need high-res shadow maps.

Easily accomplished with VSDCTs, or mipmaps on
cube maps

©2004 NVIDIA Corporation. All rights reserved.

Summary

Real-time shadow mapping isn’t a solved problem
Lots of partial solutions for specific problems

No one algorithm will work everywhere
And sometimes it is beneficial to combine them

Always squeeze out optimizations
Shadows are expensive, don’t spend perf when it
doesn’t help

©2004 NVIDIA Corporation. All rights reserved.

Acknowledgements

Sim, Ashu, Cass, Cem and other NVIDIANs
whose work I’ve shamelessly stolen
Will Newhall, for the key VSDCT insight
Oles Shishkovstov, for convincing me to
implement all of this
Simon Kozlov, whose GPU Gems article made
Perspective Shadow Maps clear to me
And everyone else I’m forgetting, for everything
I’ve taken for granted :)

©2004 NVIDIA Corporation. All rights reserved.

Questions?

gking@nvidia.com

©2004 NVIDIA Corporation. All rights reserved.

